课程教学进度计划表

一、基本信息

课程名称	机电创新设计与制作				
课程代码	0080250	课程序号	4538	课程学分/学时	3/48
授课教师	蒋忠理	教师工号	04033	专/兼职	专职
上课班级	机电 22-2	班级人数	37	上课教室	计算中心 318
答疑安排	时间:周三下午:14: 30-15:30				
课程号/课程网站	蓝墨云班级课程号及课程网站				
选用教材	《产品创新设计与实践》,武美萍主编,2021.03,高等教育出版社				
参考教材与资料	1. 《机电一体化系统设计》,张建民主编,2014.12,高等教育出版社 2. 《自动化综合实践》,李方园编著,2009.06,中国电力出版社 3. 《Solidworks2013 三维设计全解》,谢龙汉主编,2012.03,电子工业出版社 4. 《Topsolid 车铣编程与加工培训教材》,Topsolid 公司、蒋忠理、孟富森编制,2023.08				

二、课程教学进度安排

课次	课时	教学内容	教学方式	作业
1	2	 第1单元:绪论 机电创新设计与制作课程性质、内容、目标、考核要求; ● 社会发展对产品的需求(产品的概念及分类) ● 产品设计与创新内涵要素,创新思维 ● 大学生创新设计作品介绍; 	讲 授 案例分享	1. 机电系统设计原理与方法 2. 创新思维与产品设计内容?
2	2	 第2单元 创新思维概述 ● 创新思维的内涵要素 ● 创新思维特征及过程 ● 创新思维的培养 ● 创新思维案例解析(家居类产品、智能化产品、结构类产品) 	讲 授设计案例分析	 创新思维的内涵与特征? 创新方式?

3	2	 第3单元 创新设计 ● 创新设计的本质、创新设计实例 ● 结构创新(内涵、设计实例分析) ● 功能创新(内涵、设计实例分析) ● 其他创新(形态创新、生态创新、品牌创新) 	讲 授 案例分析	1. 举例说明结构、功能、 文创设计成功案例
4	2	 第4单元设计方法 ● 现代创新设计方法; ● 计算机辅助设计(CAD辅助设计软件) ● 计算机辅助设计发展与应用(制造业、工程设计、电气电子电路) 	讲 授 CAD 上机建模	1. 计算机辅助设计 应用? 2. 箱体、油泵 CAD 建模
5-6	4	 虚拟样机技术(传统设计过程、虚拟样机技术特点、相关技术、流程分析) 虚拟现实技术及应用 虚拟装配技术(CAD设计装配) 案例分析:物料传送与分拣机构设计分析 	讲 授 案例分析 上机训练	1. 掌握 CAD 虚拟装配、计算机仿真应用? 2. 机械手臂前后、上下、旋转、夹紧放松过程控制方法?
7-8	4	 第5单元产品创新设计 产品一般设计过程; 产品创新设计优化过程; 产品设计流程案例分析 产品创新设计案例(仿豹机器人、探测机器人) 	讲 授 案例分析	快速成型与 3D 打印技 术及其应用?
9-10	4	时尚概念车设计;智能茶几与 LED 台灯设计;3D 打印设计与操作实验	讲 授 案例分析 实验	3D 打印工艺流程及参数? 实验报告
11	2	 第6单元典型产品的发展与创新 手机的发展与创新 计算机的发展与创新; 自行车的发展与创新; (数控实训周二1-2节停,周四1-2节) 	讲 授 案例分析	分析产品设计历程中 工业革命新技术的推 动及发展趋势?
12	2	飞机的发展与创新;机器人的发展与创新;洗衣机的发展与创新;	讲 授 案例分析	分析现代产品设计 中文化元素及人工 智能渗透应用?
13	2	第7单元 产品创新设计引领中国智能制造● 智能制造与中国制造 2025● 技术创新驱动产业发展	讲 授 案例分析	简述中国制造 2025 发展规划?

				技术创新驱动产业 发展举措?
14-15	4	第 8 单元 数字化设计与制造 ● Topsolid-CAD 训练 ● Topsolid-车削加工 CAM 设计分析实践; (零件定位、毛坯定义、零件夹紧、加工坐标原点、端面车削、轮廓车削、刀具选用、切削参数设计)	讲 授 案例分析 上机训练	1. 完成数字化设计 (传动轴、轮毂) 2. 完成数控车削特 征刀路轨迹设计 CAM 编程与仿真 加工案例
16-17	4	 机电创新设计案例分析: 基于 AVR 单片机的机器昆虫的设计 数控铣削加工 CAM 设计分析与实践; 端面铣削、轮廓侧面铣削、刀路复制、钻孔、刀具选用、切削参数设计、刀路仿真) 	讲 授 案例分析 上机训练	1. 理解 AVR 单片机的 机器昆虫的设计计算 与校验公式; 2.完成数控铣削特征刀 路轨迹设计 CAM 编程 与仿真加工案例。
17-18	4	 机电创新设计案例分析: - 电梯门机传动与控制; 数控车铣复合加工 CAM 设计分析与实践 1 铣槽-狭槽铣削 四轴径向孔加工; 	讲 授 案例分析 上机训练	1. 理解电梯门机控制原理、安全措施、PLC控制信号 2.完成数控车铣复合加工刀路轨迹设计 CAM编程与仿真加工。
19-20	4	● 创新设计与制作报告写作要求 ● 课堂测验1(机电创新设计原理与方法) ● 数控车铣复合加工 CAM 设计分析与实践2 ▶ 轴向侧面铣 ▶ 刀路阵列复制	讲 授 测验 案例分析 上机训练	完成车铣复合加工四- 五轴加工编程设计与 仿真案例
21-22	4	 后置处理 G 指令生成 创新设计与制作交流与指导; 课堂测验 2 (数控车铣复合 CAM 设计与仿真); 	案例分析 课堂测验	创新设计与制作调 试 完成设计报告
23-24	4	作品展示与交流;考核与评分	设计制作总结 与考核	 作品展示交流; 设计制作报告;

注:由于课程内容新颖丰富,而课时比较紧张,所以实施进度将视学生掌握情况做适当调整。部分内容将要求学生课外阅读,培养自学与创新制作能力。

三、考核方式

总评构成	占比	考核方式
X1	40%	设计与制作报告
X2	25%	设计理论与方法课堂测验
Х3	25%	项目设计与实践测验
X4	10%	考勤、课堂提问及作业表现

任课教师: 為於 (签名) 系主任审核: 為於 (签名) 日期: 2024.3.1